Translational repression of thymidylate synthase by targeting its mRNA

نویسندگان

  • Divita Garg
  • Alexander V. Beribisky
  • Glauco Ponterini
  • Alessio Ligabue
  • Gaetano Marverti
  • Andrea Martello
  • M. Paola Costi
  • Michael Sattler
  • Rebecca C. Wade
چکیده

Resistance to drugs targeting human thymidylate synthase (TS) poses a major challenge in the field of anti-cancer therapeutics. Overexpression of the TS protein has been implicated as one of the factors leading to the development of resistance. Therefore, repressing translation by targeting the TS mRNA could help to overcome this problem. In this study, we report that the compound Hoechst 33258 (HT) can reduce cellular TS protein levels without altering TS mRNA levels, suggesting that it modulates TS expression at the translation level. We have combined nuclear magnetic resonance, UV-visible and fluorescence spectroscopy methods with docking and molecular dynamics simulations to study the interaction of HT with a region in the TS mRNA. The interaction predominantly involves intercalation of HT at a CC mismatch in the region near the translational initiation site. Our results support the use of HT-like compounds to guide the design of therapeutic agents targeting TS mRNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translational autoregulation of thymidylate synthase and dihydrofolate reductase.

The folate-dependent enzymes, thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are critical for providing the requisite nucleotide precursors for maintaining DNA synthesis and DNA repair. In addition to their essential roles in enzyme catalysis, these two enzymes have now been shown to function as RNA binding proteins. Using in vitro and in vivo experimental model systems, we have s...

متن کامل

MicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications

Context:MicroRNAs (miRNAs) are a class of short, endogenously-initiated, non-coding RNAs that post-transcriptionally control gene expression via translational repression or mRNA turnover. MiRNAs have attracted much attention in recent years as they play critical roles in gene expression and are promising tools with many biotech and therapeutic applications. The molecular mechanisms und...

متن کامل

Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA.

A sequence around the start codon of the mRNA of human thymidylate synthase (TS) folds into a secondary-structure motif in which the initiation site is sequestered in a metastable hairpin. Binding of the protein to its own mRNA at the hairpin prevents the production of TS through a translation-repression feedback mechanism. Stabilization of the mRNA hairpin by other ligands has been proposed as...

متن کامل

Targeting a regulatory element in human thymidylate synthase mRNA.

Thymidylate synthase (TS) is a key enzyme in the biosynthesis of thymidine. The use of TS inhibitors in cancer chemotherapy suffers from resistance development in tumors through upregulation of TS expression. Autoregulatory translation control has been implicated with TS overexpression. TS binding at its own mRNA, which leads to sequestration of the start codon, is abolished when the enzyme for...

متن کامل

Effects of 5-fluorouracil substitution on the RNA conformation and in vitro translation of thymidylate synthase messenger RNA.

In vitro transcribed thymidylate synthase (TS) mRNA which is 100% substituted with 5-fluorouracil (FUra) was analyzed for changes in mRNA secondary structure, for alterations in translational efficiency, and for evidence of translational miscoding in vitro. FUra substitution in TS mRNA results in an altered migration pattern in non-denaturing RNA gels and in decreased hyperchromicity in RNA mel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013